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Abstract—Caching at mobile edge servers can smooth temporal
traffic variability and reduce the service load of base stations
in mobile video delivery. However, the assignment of multiple
video representations to distributed servers is still a challenging
question in the context of adaptive streaming, since any two
representations from different videos or even from the same
video will compete for the limited caching storage. Therefore,
it is important, yet challenging, to optimally select the cached
representations for each edge server in order to effectively reduce
the service load of base station while maintaining a high quality
of experience (QoE) for users. To address this, we study a QoE-
driven mobile edge caching placement optimization problem for
dynamic adaptive video streaming that properly takes into account
the different rate-distortion (R–D) characteristics of videos and
the coordination among distributed edge servers. Then, by the
optimal caching placement of representations for multiple videos,
we maximize the aggregate average video distortion reduction of
all users while minimizing the additional cost of representation
downloading from the base station, subject not only to the
storage capacity constraints of the edge servers, but also to the
transmission and initial startup delay constraints of the users.
We formulate the proposed optimization problem as an integer
linear program to provide the performance upper bound, and
as a submodular maximization problem with a set of knapsack
constraints to develop a practically feasible cost benefit greedy
algorithm. The proposed algorithm has polynomial computational
complexity and a theoretical lower bound on its performance.
Simulation results further show that the proposed algorithm
is able to achieve a near-optimal performance with very low
time complexity. Therefore, the proposed optimization framework
reveals the caching performance upper bound for general adaptive
video streaming systems, while the proposed algorithm provides
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some design guidelines for the edge servers to select the cached
representations in practice based on both the video popularity and
content information.

Index Terms—Mobile edge caching, adaptive video streaming,
wireless video delivery, video-on-demand, submodular function
maximization.

I. INTRODUCTION

IN THE last decade, mobile multimedia services, such as the
streaming of mobile videos, have become the main reason for

the exponential growth of global mobile data traffic over cellular
networks [1]. For example, as revealed by [2] in 2016, real-time
entertainment that consists of streaming video and audio has
become the largest traffic category on virtually every network,
and its continued growth is expected to lead all the networks.
Such a dramatic growth of mobile video data poses significant
challenges to both video content providers and network service
providers. One noticeable consequence is the resultant accelera-
tion of peak-hour traffic in relation to the average traffic growth.
Unlike other data traffic (e.g., web usage) that occurs throughout
the day, video usage is more likely to occur during evening hours
and thus has a “prime time”. Globally, mobile busy-hour traffic
is expected to be 88% higher than average-hour traffic by 2020,
compared to 66% in 2015 [1]. Therefore, the mobile video traf-
fic presents a high temporal variability, which incurs congestion
during peak traffic hours and under-utilization during off-peak
hours. To reduce the heavy traffic load of the base station and
provide context-aware services in close proximity to the mobile
multimedia users, mobile edge computing has been introduced
to push mobile computing, network control and storage to net-
work edges [3]. In particular, mobile edge caching (MEC) is able
to utilize the storage space of edge servers across the network
and to perform multimedia content placement during off-peak
hours, thereby smoothing out the temporal traffic variability and
reducing congestion and access latencies [4].

Simultaneously, the growing heterogeneity of user popula-
tion in terms of demands for specialized video content, dis-
play devices, and access network capacity, has made the mobile
video streaming a much more complex task. Adaptive stream-
ing technique, such as dynamic adaptive streaming over HTTP
(DASH), has emerged as an effective method for video stream-
ing over heterogeneous networks, which can improve the over-
all user satisfaction by offering several representations of the
same video content to different clients [5]. Each representation
is encoded with a pre-defined bitrate and/or resolution by the
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content provider. The users then select the representation that
better fits their requirements and network conditions. There-
fore, it is promising to study the potential performance gain
introduced by the dynamic adaptive streaming in addition to the
mobile edge caching, and to investigate the proper mobile edge
caching placement schemes for dynamic adaptive streaming sys-
tems, in order to alleviate the traffic load of the base station and
reduce the access latencies of the users (i.e., benefit of caching),
and to satisfy heterogenous users’ demands (i.e., benefit of adap-
tive streaming). The basic question in this context is how to place
the local caches of the distributed edge servers with appropriate
video representations such that the overall users’ QoE in terms of
video qualities and latencies is maximized, given the cache stor-
age capacity of these edge servers. Different from the caching
schemes for traditional video streaming, the number of video
representations stored at the content server (which is managed
by the content provider) may become extremely huge since mul-
tiple representations are stored for each video. This results in a
much more difficult problem formulation with a higher compu-
tational complexity to solve it. Therefore, in adaptive streaming
based MEC systems, people are not only concerned about which
video should be cached at which edge server, they also want to
know which representation of that video should be selected for
caching.

Studies to date have investigated work related to the afore-
mentioned caching and adaptive streaming from different per-
spectives. For mobile video delivery, caching at distributed edge
servers has been demonstrated to be capable of greatly reducing
the service load of base station, and replacing the usually weak
backhaul connections from the base station with high-speed
local links from the edge servers to guarantee the low delay re-
quirement of users1 [6]. An efficient caching placement strategy
is designed for two-tier wireless content delivery networks to
reduce the system design complexity by using separate channels
for content dissemination and service [7]. For adaptive stream-
ing, the work in [8] derives a logarithmic QoE model based on
empirical results and formulates the cache management prob-
lem as a convex optimization problem. In order to cope with dy-
namic video segment requests, an online pre-fetching algorithm
is proposed in [9] to adaptively pre-fetch adaptive streaming
video segments while considering the limited bottleneck band-
width between the content server and the edge server. However,
the limitation of these state-of-the-art caching schemes is that
the video content characteristics are not taken into account. They
mainly focus on the rate (bitrate of encoded representations) and
delay (transmission delay) perspectives, and thus video sources
with different R-D behaviors are treated in the same way, which
is not the optimal solution for the adaptive streaming scenario
where different representations have different R-D behaviors.

Therefore, in this paper, we propose a novel mobile edge
caching placement optimization framework for the adaptive
streaming based video-on-demand (VoD) system with proper

1According to [6], since the edge servers are much closer to the mobile
users, localized high-bandwidth communication from the edge servers can be
achieved through enabling high frequency reuse or high-density spatial reuse of
communication resources, while backhaul communication from the base station
fails to do so.

consideration of the R-D properties of the representations from
different videos. Specifically, we formulate the caching place-
ment optimization problem as an ILP, and target maximizing
aggregate average video distortion reduction for all users while
taking into account the imposed constraints on the backhaul link,
the edge servers’ storage capacity and the users’ transmission
and initial startup delay. This is accomplished by the optimal
assignment of adaptive streaming representations of multiple
video sources to distributed edge servers. Through solving the
proposed ILP to obtain the optimal solution, we are able to
provide a performance upper bound for the caching placement.
However, it is NP-hard and thus too time-consuming to be a
practical solution for delay-sensitive video streaming. In order
to reduce the execution time of the caching placement algorithm
in practice, we convert the original optimization problem to an
equivalent set function optimization problem and show its sub-
modularity. By using the diminishing return property of the sub-
modular functions, we develop a cost-benefit greedy algorithm
for the caching placement, which has polynomial computational
complexity and offers close-to-optimal performance (approxi-
mation ratio is theoretically proved to have a lower bound and
practically shown to be above 95% under different simulation
settings in Section VI). We conduct extensive simulations un-
der different system settings. The simulation results show that
the proposed algorithm can scale very well with the size of the
system. It also strikes the tradeoff between the algorithm exe-
cution time and the performance in terms of both the average
distortion reduction per user and the base station transmission
rate. Overall, the contributions of this paper can be summarized
as follows.

1) Through introducing adaptive streaming to allow caching
multiple representations for the same video, the proposed
caching placement optimization framework addresses the
users’ heterogeneity issue and thus achieves an additional
caching performance gain (in terms of higher average dis-
tortion reduction per user and lower base station transmis-
sion rate) over the caching schemes designed for general
video files (i.e., single representation for each video). It
optimally allocates the caching resources of edge servers
not only among different videos, but also among multiple
representations of the same video.

2) In addition to video content popularity and network con-
ditions that are commonly considered by existing caching
schemes for adaptive streaming, video content charac-
teristics (i.e., the R-D property) are further taken into
account, to assign different utilities to the representations
with the same bitrate but from different videos. In this way,
the actual performance of the caching system is properly
evaluated in terms of the users’ viewing quality.

3) To efficiently solve the proposed caching placement opti-
mization, we convert it to an equivalent submodular max-
imization problem with a set of knapsack constraints. We
develop a polynomial-time greedy algorithm and provide
a theoretical proof on the lower bound of its approxima-
tion ratio.

The rest of this paper is organized as follows. Section II re-
views the related works in literature. In Section III, we introduce
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the mobile edge caching placement framework and related sys-
tem models. In Section IV, we formulate the caching problem as
an ILP by considering the users’ QoE and edge servers’ cache ca-
pacity constraints. In Section V, we transform the original ILP to
an equivalent submodular maximization problem, and develop
a practical approximation algorithm to solve this problem with
close-to-optimal performance. Section VI presents experimen-
tal results, and evaluates the gains of the proposed algorithm
compared to existing algorithms. The concluding remarks are
given in Section VII.

II. RELATED WORK

The idea of using mobile edge caching to support the cellular
level communication has been recently explored in [6], [10]–
[18]. In [10], Liu et al. summarize the design aspects and chal-
lenges of mobile edge caching. They further reveal that caching
at the wireless edge for 5G cellular networks is still an open
problem since the unique limitations in wireless networks due
to the architecture and channel (such as the network topology,
link interference, users’ mobility, and limited battery) must be
considered when designing an appropriate caching placement
strategy. In [11], the authors study a caching scheme for the
5G edge cloud network where contents are stored with a price
determined by the mobile network operator. The novel Femto-
Caching architecture in [6], [12] proposes mobile edge caching
at the small-cell access points, by compensating the backhaul
capacity with the storage capacity at the mobile edge to effi-
ciently handle some highly predictable bulky traffic (e.g., VoD
traffic). The mobile video caching placement over distributed
edge servers is essentially used to minimize the average down-
loading delay of users. The authors in [13] develop a distributed
caching optimization algorithm via belief propagation for the
heterogeneous cellular networks with edge servers, in order to
minimize the overall downloading delay. Sengupta et al. [14]
study the fundamental information theoretic limit of mobile edge
caching, revealing the optimal tradeoff between the latencies
and cache sizes. The work in [15] formulates a joint routing and
caching problem that targets at maximizing the fraction of con-
tent requests served locally by the deployed edge servers, under
the consideration of some important features such as the storage
and bandwidth capacities of edge servers, and the content re-
quest patterns of users. By further incorporating the users’ link
interference issue, a joint caching, routing and channel assign-
ment problem is proposed in [16] to maximize the throughput of
the video delivery over coordinated small-cell cellular systems.
While most of the above works assume a priori knowledge
about the content popularity, the authors in [17], [18] propose
a context/trend-aware caching scheme to predict the popularity
information based on the users’ context (e.g., his/her personal
characteristics, equipment, or external factors), which explicitly
learns the context-specific popularity of video content through
online learning and uses it to determine the caching replacement
decision. The online learning here indicates that the context in-
formation becomes available in a sequential order and is used to
update the best predictor for the short-term popularity of con-
tent at each time step, as opposed to the learning techniques that

generate the best predictor by learning on the entire training set
at only one dedicated training phase. However, all these above
studies only focus on the caching assignment problems for gen-
eral (video) files. This is however not sufficient in the context
of adaptive video streaming [10], where appropriate bitrate rep-
resentations need to be carefully determined and pre-fetched in
the edge servers.

In another line of research, some works have been done to
leverage caching in the dynamic adaptive video streaming sys-
tem [8], [9], [19]–[25]. From the rate adaptation perspective,
Lee et al. [19] investigate the bitrate oscillation and sudden rate
change problem occurring through the interaction between the
clients and caches, and propose an approach that uses shaping to
eliminate such oscillations. Jin et al. [20] apply caching to adap-
tive streaming, and study the optimal transcoding and caching
allocation scheme in media cloud in order to minimize the total
operational cost of delivering on-demand adaptive video stream-
ing, with the assumption that each mobile user accesses one
edge server for video downloading. Gao et al. [21] investigate
the tradeoff between storage and transcoding computation in the
cloud, and propose a cost-efficient partial transcoding scheme
for content management based on user viewing patterns. Zhao
et al. [22] further develop a video segment-based caching strat-
egy for multiple representation VoD systems to minimize the
storage and transcoding costs. In order to cope with dynamic re-
quests, the work in [9] proposes an online pre-fetching algorithm
to adaptively pre-fetch adaptive streaming video segments while
respecting the limited bottleneck bandwidth between the content
server and the edge server. To improve the users’ QoE, the au-
thors in [8] derive a logarithmic QoE model based on empirical
results and formulate a cache management problem for adaptive
streaming as a convex optimization problem, thereby providing
an analytical framework for this engineering problem. The work
in [23] proposes an in-network video caching policy for informa-
tion centric networks to enhance users’ QoE in terms of average
user throughput, based on the content popularity distribution. A
QoE-driven DASH video caching and adaptation algorithm is
proposed in [24] to make the caching and replacement decision
based on the content context (e.g., segment popularity) and the
network context (e.g., downlink bandwidth). However, all these
works only focus on the operational-cost/rate perspective and
thus neglect the video content characteristics of the represen-
tations from different video contents. Here, the video content
means the distinct foreground, background and motion in the
video, which results in different rate-distortion (R-D) behaviors
(considered as the video content characteristics) for different
video sources after encoding. In other words, this difference of
video content (or R-D behaviors) between different videos is
not considered in the above works, where the multiple repre-
sentations encoded from different raw videos but with the same
bitrate are assumed to have the same system utility. Therefore,
their caching performance depends only on the video content
popularity and network conditions. However, as will be justified
by the experimental results in Section VI, it is only by carefully
considering the video content characteristics (i.e., the R-D be-
havior) that the actual performance of the caching system can
be properly evaluated in terms of user utility.
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TABLE I
COMPARISON WITH THE MOST RELEVANT WORKS ON MOBILE EDGE CACHING FOR VIDEO STREAMING

This work [6], [12] [13], [15], [16] [20] [9] [25] [23], [24]

Applicable to adaptive streaming Yes No No Yes Yes Yes Yes
Optimal performance upper bound Yes No Yes Yes Yes No No
Approximation algorithm guarantee Yes Yes Yes N/A Yes No No
Operational-cost/rate-cost aware Yes Yes Yes Yes Yes No Yes
Video content characteristics aware Yes No No No No Yes No

In our previous work [25], we have partially addressed this
issue by proposing a wireless video caching placement opti-
mization problem for dynamic adaptive video streaming and
a fast approximation algorithm to minimize the average video
distortion of all clients, under the edge servers’ storage capacity
constraints. In this work, we further provide a general optimiza-
tion formulation as an ILP along with its optimal solution as
a performance upper bound. In addition, we also take into ac-
count other QoE metrics, such as the initial startup delay, in
order to better reflect the actual utility of each video stream.
Finally, we study in detail the approximation algorithm for the
cache allocation, and provide a theoretical lower bound on its
performance.

In summary, Table I lists the differences between this work
and the most relevant papers in the literature on mobile edge
caching for video streaming. Within these references, [6] and
[12] are the most related papers. Through the comparison in
Table I, it can be seen that the work in [6] and [12] is a caching
scheme designed for general video files (i.e., single representa-
tion for each video) and only considers video content popularity
distribution and network conditions, while this work addresses
the caching resource allocation among different videos and dif-
ferent representations of adaptive streaming through the consid-
eration of video content characteristics (i.e., the R-D behavior).
In addition, the femto-cache algorithm proposed in [6] and [12]
has been selected as a comparison algorithm in Section VI,
which justifies that compared to the femto-cache algorithm, this
work can achieve a higher caching performance gain in terms
of average distortion reduction per user and base station trans-
mission rate.

III. FRAMEWORK AND SYSTEM MODELS

A. Framework

Consider a wireless adaptive streaming based VoD system as
illustrated in Fig. 1. Suppose that the base station stores F video
files, each of which is encoded into M different representations.
S edge servers with certain capabilities of pre-fetching video
content are deterministically placed in the wireless coverage
region of the base station, and are assumed to connect to the
base station through single hop transmission. If the connection
between the base station and edge servers in some cases is multi-
hop, the multi-hop connection characteristics can be considered
as the end-to-end transmission rate between them. These edge
servers are geographically closer to the mobile users and enable
high-density spatial reuse of the wireless resources with high-
speed localized communication, which is usually assumed to

Fig. 1. (a) Example of the system layout, where mobile users are randomly
distributed, while edge servers are connected to the base station with backhaul
links and can be deterministically placed in the coverage region. (b) The con-
nectivity bipartite graph indicating how mobile users are connected to the edge
servers.

be much faster than the backhaul links connected to the base
station [12]. For the VoD service with a priori knowledge of
the video popularity distribution, some popular video files can
be pre-fetched by the edge servers during the off-peak hours to
relieve the service load of the base station and to replace the
weak backhaul communication.

The mobile edge caching placement criteria for adaptive
streaming are as follows. Whenever a mobile user sends a play-
back request for a specific video, it attempts to download the
highest possible quality representation from its adjacent edge
servers in accordance with the content placement and the avail-
able download link capacity. If the same high quality represen-
tation is cached in multiple edge servers, the user might want to
download it from the edge server with the highest transmission
rate, in order to reduce the initial startup delay. That is, the user
will first determine whether there is a representation with the
highest bitrate available at one of its adjacent edge servers and
the download of this representation can be supported by the link
capacity with an acceptable downloading delay. If yes, the user
could download and playback that representation; otherwise,
it would make a further selection for the representation with
the next lower bitrate. This determination will continue until
a representation with an affordable bitrate is found at an edge
server or the representation with the smallest bitrate is reached.
When no representation of the requested video is available at
any adjacent edge server, the user has to turn to the base station
and download the representation with the highest bitrate that
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could be afforded by the backhaul link connected to the base
station. However, downloading from the base station will result
in a much more expensive transmission cost since the backhaul
communication resource is typically very limited compared to
the high-speed links offered by the adjacent edge servers.

B. System Models

We now describe in more detail the model that we consider
in this work, and introduce the notation.

Let first F denote the set of F video files that are offered
to the users. Any video file f ∈ F is encoded into a set of M
representations Zf = {zf,m |∀m = 1, 2, . . . , M} with the m-th
representation zf,m having an encoding bitrate being Rf,m .
We further suppose that this set is sorted in a decreasing or-
der of the encoding bitrate, i.e., Rf,i > Rf,j ,∀1 ≤ i < j ≤ M .
Therefore, the complete set including all representations for all
the video files can be denoted as Z = ∪f∈FZf . For the sake
of simplicity, and without loss of fundamental generality, we
adopt the assumption from [20], that each video file has the
same length T . Such assumption is mainly proposed for the no-
tational convenience, and could be easily lifted by breaking a
longer file into multiple files of the same length [12]. If in some
scenarios the video lengths are significantly heterogeneous and
this assumption becomes no longer reasonable, we can use the
notation Tf to represent the length of video file f in the cache
capacity constraint of ILP in (8b) (or its equivalent submodular
problem in (12b)), which would not fundamentally change the
corresponding analysis and algorithm design.

To illustrate the connection between the edge servers and
the users, the wireless network is defined by a bipartite graph
Gsu = (S,U , Esu ), where S represents the set of S edge servers,
U denotes the set of U mobile users, and a graph edge
(s, u) ∈ Esu indicates that a wireless communication link exists
from the edge server s ∈ S to the user u ∈ U . The download
link transmission rate of the wireless link (s, u) is denoted by
c(s,u)

2. For each edge server s ∈ S, the cache storage capability
is constrained by the capacity Bs . Finally, we denote by N (u)
the neighboring edge servers of user u ∈ U . We assume that
N (u) is sorted in a decreasing order of the download link ca-
pacity, such that (i)u ∈ N (u) represents the edge server with
the i-th largest capacity of the link to the user u. In this paper, we
study the caching system with the caching placement decision
to be made for a certain time period (e.g., several hours during
the peak hours, or even several days), during which the average
demand for the set of F video files is assumed to be known in
advance, as in [12], [20], [29]. In this way, the backhaul is only
used to refresh the caches at the rate at which the user request
distribution evolves over time, which is a much slower pro-

2In this paper, we assume that we have detected and known the accurate
channel state information (CSI) for the upcoming transmission frame and that
the transmission rate c(s ,u ) is known a priori. For the time-vary wireless chan-
nel when c(s ,u ) is not perfectly known and may change over time, channel
prediction techniques [26] can be used to estimate the link transmission rate.
For example, the finite state Markov channel model [27], [28] is widely adopted
as a good approximation in modeling and predicting the time-varying processes
of wireless links. However, the detailed description of these channel prediction
techniques is beyond the scope of this paper.

cess than the time scale at which the users place their requests
[12]. Therefore, we adopt the assumption from [12], [20], that
users’ requests are statistically independent and a probability
mass function Pu,f is used to represent the average probability
that the video file f ∈ F is requested by the user u ∈ U within
this time period. This independent user request model is an ac-
ceptable approximation in an average sense or when the content
popularity variation over time is relatively slow.

We further consider a caching system where a representation
of a video file is either cached fully (i.e., the whole representa-
tion of the length T ) or not cached at all in any edge server3,
the representation placement strategy can be represented by a
bipartite graph Gzf , m ,s = (Z,S, Ezf , m ,s) between vertices rep-
resenting edge servers in S, and vertices describing video rep-
resentations in Z . An edge (zf,m, s) ∈ Ezf , m ,s is drawn when
zf,m (i.e., the m-th representation of video file f ) is stored in
the cache of edge server s. To better understand the representa-
tion placement strategy as shown by the bipartite graph, we can
further denote AF ×M ×S as the F × M × S adjacency matrix
of Gzf , m ,s , such that ∀s ∈ S, as

f,m = 1 indicates that an edge
(zf,m, s) ∈ Ezf , m ,s exists and as

f,m = 0 denotes the absence of
an edge between zf,m and s, i.e.,

as
f,m =

⎧
⎨

⎩

1, if the edge server s caches the m-th
representation of video f ;

0, otherwise.
(1)

C. Quality-of-Experience Models

According to [32], both the initial startup delay (the waiting
time interval between the client’s request and the beginning of
the playback) and the average video quality (the average video
distortion) are the key factors that affect the quality of experience
(QoE) of video streaming services.

For each user u ∈ U , the initial startup delay constraint re-
quires that the waiting time interval between submitting a re-
quest and the actual video playback should not exceed the max-
imum tolerable waiting time of that user, which is denoted
as du,max . Let us assume first that the video representation
zf,m ∈ Z is available in the cache of user u’s adjacent edge
server s ∈ S. Let us further denote with ΔT the time fraction
within a video file that is required to be buffered by the user
before the actual playback starts on the user’s screen. Then the
initial startup delay experienced by the user u to download the
representation zf,m from the edge server s is:

ds
u,f ,m =

Rf,m · ΔT

c(s, u)
,∀u ∈ U ,∀zf,m ∈ Z,∀s ∈ S. (2)

3In some scenarios where the sizes of video files are very large (e.g., HD
videos, or video length T is too long) and the caching storage resource becomes
the critical concern, we can alternatively adopt the partial caching strategy that
caches the first portion of the same length T ′ (T ′ � T ) for each representation
of each video. The reason is as follows. Based on the studies on users’ behavior
and viewing patterns in some practical VoD systems, such as YouTube [30]
and PPTV [31], it is observed that usually users only watch a small portion of
the full content of a video. For example, statistics in [30] show that 95% of
the views last shorter than 200 seconds. Therefore, the consumption of caching
storage greatly decreases by only partially caching the first T ′ seconds of each
representation (e.g., T ′ = 200 s), and the system is still efficient since most of
the time (e.g., > 95%) the users are satisfied with the partially cached content.
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Here, we set the transmission rate of links from the non-adjacent
edge servers of a user to a small positive value that is arbitrarily
close to zero, i.e., for all s /∈ N (u) we have c(s,u) = ε, where
ε → 0 and accordingly ds

u,f ,m → +∞. Similarly, when the re-
quested video is not available in the edge servers, the initial
startup delay experienced by the user u to download zf,m from
the base station is:

du,f ,m =
Rf,m · ΔT

c(BS, u)
,∀u ∈ U ,∀zf,m ∈ Z, (3)

where c(BS, u) is the download link transmission rate of the
wireless link connecting the base station and the user.

Then, we use a general rate-distortion function Dmax −
ΔDf (Rf,m ) to denote the distortion of the m-th representa-
tion of the video f with the encoding bitrate Rf,m , where Dmax
and ΔDf (Rf,m ) represent a constant maximal distortion when
no video is decoded and the distortion reduction (or quality
improvement) after successfully decoding this representation,
respectively.By utilizing the R-D model in [33], ΔDf (Rf,m )
can be expressed as:

ΔDf (Rf,m ) = Dmax − D0 −
θ

Rf,m − R0
(4)

where the variables, θ, R0 and D0 , are empirical parameters that
depend on the actual video content; they can be estimated as the
fitting parameters from the empirical rate-distortion curves of
different videos by using regression techniques.

IV. QOE-DRIVEN CACHING PLACEMENT OPTIMIZATION

PROBLEM

A. Problem Description and Challenges

The QoE-driven mobile edge caching placement problem for
adaptive streaming can be summarized as follows: given the
representation set of source video files, the file popularity distri-
bution, the edge server storage capacity and the network topol-
ogy, how to place the representations of the video files in the
distributed edge servers such that the total system utility (which
is defined by (7) and (8a) in the next subsection) is maximized
subject to the caching capacity constraint of each edge server
and the downloading delay requirement of each user.

If each video file has only one representation and each user has
only access to one edge server, the optimal placement strategy
becomes simple and straightforward. That is, each edge server
should cache as many of the most popular video files as possible
until its storage is full. However, for the case of dense edge server
deployment where each user can have access to more than one
edge servers, the optimal content placement strategy becomes
highly nontrivial. Furthermore, if each video file is available
in different representations with different bitrates, the optimal
placement problem becomes even more complicated.

Compared to the caching problem with general files, the fun-
damental technical challenges introduced by the adaptive video
streaming, i.e., multiple representations of a video file need to
be cached, can be explained as follows. The general file caching
problem usually addresses the caching resource competition is-
sue among different files by placing appropriate files in the

distributed edge servers. It is also based on the assumption that
there is no difference between different files in terms of the sys-
tem utility, i.e., downloading a different file would lead to the
same utility improvement (e.g., the increase of hit ratio). When
the adaptive video streaming is taken into account, however,
people are not only concerned with which video file should be
cached at which edge server, they also want to know which repre-
sentation(s) should be selected to cache in order to maximize the
overall system utility. This means that not only different video
files, but also the multiple representations of the same video file
will compete for the caching resource at the edge servers. In
addition, due to the difference of video content characteristics,
downloading the same bitrate representation of different video
files would also result in different utility improvement (e.g., the
distortion reduction). Even for the same video file, the caching
resource allocation problem becomes more complicated since
the relationship between the utility improvement (e.g., the dis-
tortion reduction) and the bitrate of the different representations
is nonlinear and presents the diminishing return property. It
should be noted that all of the above issues introduced by the
adaptive streaming cannot be straightforwardly addressed by
the general file caching problem, which motivates us to study the
following caching placement optimization problem for adaptive
streaming.

B. System Utility Function

First, we introduce two sets of auxiliary binary variables:

βs
u,f ,m =

⎧
⎨

⎩

1, if user u gets the m-th representation
of video f from edge server s;

0, otherwise.
(5)

γu,f ,m =

⎧
⎨

⎩

1, if user u gets the m-th representation
of video f from the base station;

0, otherwise.
(6)

We then define the following utility function, based on both the
average video distortion reduction experienced by the user u
and the cost of the representation downloading either from the
edge server or the base station:

Qu=
∑

f∈F

M∑

m=1

∑

s∈N (u)

βs
u,f ,m · Pu,f · [ΔDf (Rf,m ) − η0 · Rf,m ]

+
∑

f∈F

M∑

m=1

γu,f ,m · Pu,f · [ΔDf (Rf,m ) − η · Rf,m ]

(7a)

≈
∑

f∈F

M∑

m=1

∑

s∈N (u)

βs
u,f ,m · Pu,f · ΔDf (Rf,m )

+
∑

f∈F

M∑

m=1

γu,f ,m · Pu,f · [ΔDf (Rf,m ) − η · Rf,m ].

(7b)

As usually done in many rate-distortion optimization
problems [34], in the utility function defined in (7a), we
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impose the bandwidth constraints (from the edge servers and
the BS) as the cost penalty, rather than putting them as hard
constraints. It represents a typical optimization objective that
trades bandwidth (resource cost) for video quality. Specifi-
cally, [ΔDf (Rf,m ) − η0 · Rf,m ] in the first term of (7a) in-
cludes the video distortion reduction ΔDf (Rf,m ) of down-
loading the representation zf,m , and a transmission cost penalty
η0 · Rf,m where η0 is the unit price parameter correspond-
ing to the representation downloading of zf,m from the ad-
jacent edge servers. As constrained by (8f), for any user
u ∈ U and any video file f ∈ F , at most one βs

u,f ,m ,∀m =
1, 2, . . . ,M,∀s ∈ N (u) equals to 1. Therefore, the weighted
summation (where the weight is the video request probability
Pu,f ) over all F video files,

∑
f∈F

∑M
m=1

∑
s∈N (u) βs

u,f ,m ·
Pu,f · [ΔDf (Rf,m ) − η0 · Rf,m ], represents the average video
distortion reduction plus the average transmission cost penalty
experienced by user u downloading requested video represen-
tations from its adjacent edge servers. Likewise, the second
term in (7a) represents the average video distortion reduction
plus the average transmission cost penalty experienced by user
u downloading requested video representations from the base
station. Due to the limited bandwidth available in the backhaul
channel, the unit price for downloading from the base station is
much higher than the unit price for accessing the adjacent edge
servers (i.e., η � η0).4 As a consequence, the overall caching
system will prefer to store representations in the edge servers,
since downloading the same representation from an edge server
achieves the same distortion reduction gain while the transmis-
sion cost is much lower. Users will only access the base station
for representation downloading in some rare cases when they
are highly rewarded. This happens either when there is no rep-
resentation of the requested video cached in their adjacent edge
servers, or when the cached content has a very poor quality and
the distortion reduction gain of a better quality representation is
so high that downloading it from the base station with a higher
transmission cost is worthy for the overall utility improvement.
For the sake of simplicity, hereinafter, we assume that η0 → 0
and η is a positive constant, and thus define the utility function
as shown in (7b).

C. Optimization Problem Formulation

Mathematically, the QoE-driven mobile edge caching place-
ment problem for adaptive streaming can be formulated as an
integer linear program (ILP), as follows:

ILP : max
A,β,γ

∑

u∈U
Qu (8a)

4For the sake of simplicity, we assume in this paper that the unit downloading
price η0 is the same for different edge servers, since the downloading cost of the
same representation from different edge servers differs very slightly compared
to the much larger downloading cost from the base station. This assumption
could be lifted by assigning a different unit downloading price ηs

0 in (7a)
to an edge server s. Then, the ILP in (8) can be similarly solved by setting
the optimization objective according to (7a). For the equivalent submodular
maximization problem and its approximation algorithm, we only need to re-
sort the set of neighboring edge servers Nu for each user u, in such a way
that (i)u ∈ N (u) represents the edge server offering the i-th smallest unit
downloading price.

s.t.
∑

f∈F

M∑

m=1

as
f,m · Rf,m · T ≤ Bs,∀s ∈ S, (8b)

βs
u,f ,m · ds

u,f ,m ≤ du,max ,∀u ∈ U ,∀zf,m ∈ Z,∀s ∈ S,

(8c)

γu,f ,m · du,f ,m ≤ du,max ,∀u ∈ U ,∀zf,m ∈ Z, (8d)

βs
u,f ,m ≤ as

f,m ,∀u ∈ U ,∀zf,m ∈ Z,∀s ∈ S, (8e)

M∑

m=1

γu,f ,m +
M∑

m=1

∑

s∈N (u)

βs
u,f ,m ≤ 1,∀u ∈ U ,∀f ∈ F ,

(8f)

βs
u,f ,m ∈ {0, 1},∀u ∈ U ,∀zf,m ∈ Z,∀s ∈ S, (8g)

γu,f ,m ∈ {0, 1},∀u ∈ U ,∀zf,m ∈ Z, (8h)

as
f,m ∈ {0, 1},∀zf,m ∈ Z,∀s ∈ S. (8i)

In the above ILP, the objective is to maximize the aggregate
utility defined in (7b), or equiavelent to maximize the aver-
age video distortion reduction of all users (which is equivalent
to minimizing the aggregate average video distortion) while
minimizing the transmission cost of the representation down-
loading from the base station. The decision variables are the
representation placement strategy represented by the adjacency
matrix AF ×M ×S ∈ {0, 1}F ×M ×S and the sets of auxiliary bi-
nary variables β and γ. The constraint in (8b) represents the
cache capacity constraints of each edge server, where T is the
time duration of each video file. The startup delay constraints in
(8c) and (8d) specify that the initial startup delay experienced
by the user u to download the representation zf,m either from
the edge server s or the base station should not exceed the max-
imum tolerant waiting time du,max . The constraint in (8e) sets
up a consistent relationship between the decision matrix A and
auxiliary variables β, ensuring that the representation selected
by a user is already cached and available at the edge server s.
The constraint in (8f) imposes that for any video f , the user u
can only download at most one representation from at most one
edge server (or the base station), to avoid duplicated download-
ing of multiple representations for the same video or the same
representation from multiple edge servers (or the base station).
Together with the startup delay constraints in (8c) and (8d), it
ensures that only one representation will be downloaded by the
user u for the video f . Furthermore, this representation is the
largest possible bitrate representation under the user’s download
link capacity and the startup delay constraints, since otherwise
the value of the objective function in (8a) decreases, which indi-
cates a non-optimal solution. The constraints in (8g)–(8i) define
the binary decision and auxiliary variables, respectively.

The optimal solution of the ILP can be obtained by the generic
solver IBM ILOG CPLEX [35], using a branch-and-cut search.
The branch-and-cut procedure follows a search tree consist-
ing of nodes, each of which represents a relaxed LP subprob-
lem to be solved. It then involves running a branch and bound
algorithm to create two new nodes from a parent node, and
adding additional cutting planes to tighten the LP relaxations and



972 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 4, APRIL 2018

reduce the number of branches required to solve the original
ILP. In general, the branch-and-cut search requires exponen-
tial computational complexity to achieve the optimal solution
in the worst case [36], [37]. Therefore, the ILP problem in (8)
is NP-hard. Specifically, it can be observed that the cardinality
of the decision variables A, β, and γ is FMS, UFMS, and
UFM , respectively. By using the branch and bound method for
the binary decision variables, in the worst case, the number of
nodes observed by the CPLEX solver would be upper bounded
by 2F M S × 2U F M S × 2U F M . At each node the solver needs
to solve a relaxed LP problem with the SIMPLEX method.
This corresponds to an exponential computational complexity
O(22U ·3F ·3M ·2S ) and thus incurs an incredibly long execution
time when the problem scale becomes large.

V. EQUIVALENT SUBMODULAR MAXIMIZATION PROBLEM AND

ALGORITHM DESIGN

In order to efficiently cope with the difficulties of solving
the ILP in (8), in this section, we convert it to an equivalent
set function optimization problem. We prove that it is a sub-
modular maximization problem over independence constraints.
We finally develop new practically efficient algorithms with
polynomial computational time complexity and theoretical ap-
proximation guarantees.

A. Equivalent Problem Formulation as a Set Function
Optimization

In accordance with the adjacency matrix AF ×M ×S in the
ILP in (8), the finite ground set of the equivalent set function
optimization problem can be viewed as:

V = {V1 , . . . ,Vs , . . .VS },
Vs = {vs

1,1 , . . . , v
s
1,M , . . . , vs

f ,m , . . . , vs
F,1 , . . . , v

s
F,M },∀s ∈ S,

(9)

where the ground set is partitioned into S disjoint subsets. Each
subset Vs denotes the full set of all representations of all files
that may be cached on the edge server s, and the element vs

f,m

represents the placement of the m-th representation of video
file f (i.e., zf,m ) on the cache of the edge server s. For a given
adjacency matrix AF ×M ×S , the corresponding representation
placement setA ⊆ V can be defined in such a way that vs

f,m ∈ A
corresponds to the case as

f,m = 1 and vice versa.
When initial startup delay constraints are taken into account,

the feasible set should be re-defined by eliminating the elements
that violate the maximum tolerance of the initial startup delay
from the ground set V in (9). From the perspective of users,
for any u ∈ U , the initial startup delay constraint indicates that
a representation that could be downloaded from an edge sever
within the maximum delay bound is considered feasible and
might contribute to the aggregate expected distortion reduction.
In the ILP in (8), such a constraint is indicated by (8c), which

corresponds to a feasible subset of the ground set V:

Ωu=
{

vs
f,m ∈ V

∣
∣
∣
∣d

s
u,f ,m ≤ du,max ,∀s ∈ S,∀zf,m ∈ Z

}

⊆ V,

∀u ∈ U .
(10)

It should be noted that for a given representation set FM and
known transmission rate for links between S and U , the feasible
subset Ωu is also given with respect to the value of du,max .
Accordingly, the utility function of user u in (7) can be rewritten
in terms of the set function, by also considering the initial startup
delay constraints, as:

Qu (A) =
∑

f∈F

M∑

m=1

|N (u)|∑

i=1

⎡

⎣
m−1∏

n=1

|N (u)|∏

j=1

(
1 − 1|

v
( j )u
f , n ∈(A∩Ωu )

)
⎤

⎦

·

⎡

⎣
i−1∏

j=1

(
1 − 1|

v
( j )u
f , m ∈(A∩Ωu )

)
⎤

⎦ · 1|
v

( i )u
f , m ∈(A∩Ωu )

· Pu,f · ΔDf (Rf,m )

+
∑

f∈F

⎡

⎣
M∏

m=1

|N (u)|∏

j=1

(
1 − 1|

v
( j )u
f , m ∈(A∩Ωu )

)
⎤

⎦

· Pu,f · [ΔDf (Rf,m ∗) − η · Rf,m ∗ ]. (11)

The definition of (11) follows the distributed caching place-
ment criterion in Section III-A. In (11), 1|x∈X is an in-
dicator function, which is 1 if x ∈ X and 0 otherwise;
and the term [

∏m−1
n=1

∏|N (u)|
j=1 (1 − 1|

v
( j )u
f , n ∈(A∩Ωu ))] · [

∏i−1
j=1(1 −

1|
v

( j )u
f , m ∈(A∩Ωu ))] · 1|v ( i )u

f , m ∈(A∩Ωu ) = 1 is the indicator function

defined over the feasible placement set A ∩ Ωu for the case
where the m-th representation of video file f is the best repre-
sentation that user u could find in its neighboring edge servers
while the initial startup delay constraint is satisfied, and this
representation is at the cache of edge server (i)u . In particular,
[
∏m−1

n=1
∏|N (u)|

j=1 (1 − 1|
v

( j )u
f , n ∈(A∩Ωu ))] = 1 indicates that no rep-

resentation with an index smaller than m is available at any of
the adjacent edge servers; and [

∏i−1
j=1(1 − 1|

v
( j )u
f , m ∈(A∩Ωu ))] = 1

indicates that the m-th representation is not available at any
of the edge servers with a larger download link rate (shorter
initial startup delay) than the edge server (i)u . The term
[
∏M

m=1
∏|N (u)|

j=1 (1 − 1|
v

( j )u
f , m ∈(A∩Ωu ))] = 1 indicates that no rep-

resentation of video file f can be found in any neighboring
edge server of user u, and the user u will download from the
base station the representation zf,m ∗ that has the highest bitrate
while still respecting the initial startup delay constraint, namely
zf,m ∗ = arg max{zf , m ∈Z, du , f , m ≤du , m a x } Rf,m .

Therefore, the original optimization problem ILP in (8) can
be reformulated as a constrained set function optimization prob-
lem that leads to the same solution of the ILP based on the
distributed caching placement criterion in Section III-A, as
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follows:

SUB : max
A⊆V

Q(A) =
∑

u∈U
Qu (A) (12a)

s.t. A ∈ I, (12b)

I=
{

A′ ⊆ V
∣
∣
∣
∣

∑

f∈F

M∑

m=1

1|vs
f , m ∈A′ · Rf,m · T ≤ Bs,∀s ∈ S

}

.

Comparing the original problem ILP in (8) with the
equivalent set function optimization formulation SUB in
(12), it can be seen that the objective function and the first
constraint in the problem ILP in (8) are transformed to (12a)
and (12b) in problem SUB, respectively. The initial startup
delay constraint of each user u in (8c) is preserved by the
feasible subset Ωu applied in the objective function Qu (A) as
defined in (11), while the delay constraint in (8d) is ensured
by the definition of zf,m ∗ in (11). The constraints in (8e)
and (8f) are also guaranteed since Qu (A) in (11) is derived
according to the distributed caching placement criterion in
Section III-A. That is, for each video, only one achievable
representation with the highest bitrate will be selected for
each user with its coefficient, either [

∏m−1
n=1

∏|N (u)|
j=1 (1 −

1|
v

( j )u
f , n ∈(A∩Ωu ))] · [

∏i−1
j=1(1 − 1|

v
( j )u
f , m ∈(A∩Ωu ))] · 1|v ( i )u

f , m ∈(A∩Ωu )

or [
∏M

m=1
∏|N (u)|

j=1 (1 − 1|
v

( j )u
f , m ∈(A∩Ωu ))], in (11) being one,

while the coefficients of the other representations are all zeros.

B. Submodular Maximization Problem

Submodularity, often viewed as a discrete analogue of con-
vexity, plays a central role in discrete optimization. Its character-
izing property, diminishing marginal returns, makes submodular
maximization an efficient approach for many real-world applica-
tions, including approximation algorithms and many challeng-
ing problems in machine learning. We show now that problem
SUB in (12) is a submodular maximization problem. We first
review and include the definition of submodular functions ac-
cording to [38]–[40].

Definition 1: Submodularity: Let V be a finite ground set,
and a set function g : 2V → R is submodular if and only if for
any sets X ⊆ Y ⊆ V and for any element v ∈ (Y \ X ), we have

g(X ) + g(Y) ≥ g(X ∪ Y) + g(X ∩ Y), (13)

or equivalently

g(X ∪ {v}) − g(X ) ≥ g(Y ∪ {v}) − g(Y), (14)

which captures the diminishing marginal return characteristics
such that the benefit of adding a new element into the set de-
creases as the set becomes larger.

We now prove that the objective function of the problem SUB
in (12) is monotone submodular.

Proposition 1: The objective function in (12a) is a monotone
submodular function over the ground set V as defined in (9).

Proof: This proposition can be proved by using the definition
of monotonicity and submodularity. �

We further observe the cache storage constraint of edge
server s ∈ S in (12b), and note that each element vs

f,m ∈ A

(corresponding to the case as
f,m = 1 in AF ×M ×S ) has a non-

uniform cost of Rf,m · T and s has a storage budget of Bs .
This constraint can be viewed as a knapsack constraint on the
subset Vs ∈ V . Overall, the distributed caching placement prob-
lem in (12) is a submodular maximization problem subject to
a set of knapsack constraints, which still is generally NP-hard
and requires exponential computational complexity to reach the
optimum by either ILP or other optimization methods. It is ex-
pected that by exploiting submodularity, the polynomial-time
greedy algorithm is able to provide an effective approximation
of the optimal solution of this NP-hard problem [41]. How-
ever, according to [41], [42], the greedy algorithm can only
efficiently address the simplest case (i.e., a submodular maxi-
mization problem subject to one knapsack constraint) with theo-
retical approximation guarantee. When the number of knapsack
constraints becomes greater than one, the greedy algorithm in
general is no longer efficient, and in the worst case its approxi-
mation ratio will be arbitrarily bad. An exception exists if the set
of multiple knapsack constraints forms a matroid [38], such as
the cache placement problem in [6] and [12] where the knapsack
constraints are proved to be a partition matroid since all video
files have the same size. In comparison, the proof of matroid for
the multiple knapsack constraints in [6] and [12] no longer holds
in our case because of the different video file sizes introduced
by adaptive streaming. However, due to the special structure of
the knapsack constraints in (12) (i.e., each knapsack constraint
is imposed on the subset Vs ∈ V , and the set of all knapsack
constraints is imposed on the finite ground set V), we develop
in the next subsection a polynomial-time greedy algorithm and
provide a theoretical proof on the approximation ratio of the
proposed greedy algorithm.

C. Approximation Algorithm

To efficiently solve the submodular maximization problem in
(12) with polynomial time complexity and theoretical approxi-
mation guarantees, we develop a k-cost benefit (k-CB) greedy
algorithm. The system parameter, k = 0, 1, 2, . . . specifies the
size of the initial set. Specifically, the proposed k-CB greedy
algorithm considers all feasible initial sets A0 ⊆ V of cardi-
nality k. Starting from any initial set A0 , at step t, the cost
benefit greedy procedure iteratively searches over the remain-
ing set V t−1 \ At−1 and inserts into the partial solution At−1

an element according to (16) and (17), until the remaining set
reduces to an empty set. In other words, the cost benefit pro-
cedure adds at each iteration an element that maximizes the
ratio between marginal benefit Q(At−1 ∪ {vs

f,m}) − Q(At−1)
and cost Rf,m · T among all elements still affordable under
the remaining storage budget until no more elements can be
added. The proposed k-CB greedy algorithm then enumerates
all initial sets A0 ⊆ V of cardinality k, augments each of them
following the cost benefit greedy procedure, and selects the
initial set achieving the largest value of the objective function
Q(A) =

∑
u∈U Qu (A) and finds its solution set as the final

placement set A∗
k . For the special case of k = 0, the algorithm

reduces to a simple cost benefit greedy algorithm starting with
A0 = ∅. On the other hand, if we remove the cost term Rf,m · T
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Algorithm 1: k-Cost benefit (k-CB) greedy algorithm
Input: system parameter k; finite ground set V; video

length T ;
encoding bitrate Rf,m for any representation
zf,m ∈ Z;
and cache storage capacity Bs for any edge server
s ∈ S.

Output: caching placement set A∗
k

1: id := 1 // the index of the initial set
2: for any initial set A0 ⊆ V and |A0 | = k do
3: V0 := V and t := 1 // initialization
4: for t = 1, 2, 3, . . . do
5: // greedy search iteration
6:

θt := max
vs

f , m ∈V t−1 \At−1

Q(At−1 ∪ {vs
f,m}) − Q(At−1)

Rf,m · T
(15)

7:

vst

ft ,m t
:= arg max

vs
f , m ∈V t−1 \At−1

Q(At−1 ∪ {vs
f,m}) − Q(At−1)

Rf,m · T
(16)

8: if

∑

f∈F

M∑

m=1

1|vs t
f , m ∈(At−1 ∩Vs t )∪{vs t

f t , m t
} · Rf,m · T ≤ Bst

(17)
then

9: At := At−1 ∪ {vst

ft ,m t
} and V t := V t−1

10: else
11: At := At−1 and V t := V t−1 \ {vst

ft ,m t
}

12: end if
13: if V t \ At �= ∅ then
14: t := t + 1
15: else
16: break
17: end if
18: end for
19: Aid := At and id := id + 1
20: end for
21: A∗

k := arg maxi∈{1,2,...,id−1}
∑

u∈U Qu (Ai)

in (15) and (16) and only add at each iteration an element maxi-
mizing the marginal benefit Q(At−1 ∪ {vs

f,m}) − Q(At−1), the
algorithm reduces to a k-simple greedy algorithm. The complete
k-cost benefit greedy algorithm is described in Algorithm 1.
Since the k-simple greedy algorithm is only slightly different
from Algorithm 1, it is thus omitted due to the space limit.

In terms of computational complexity, the running time of the
proposed k-CB greedy algorithm is O((SFM)k+1U), indicat-
ing a polynomial time complexity and a very short additional
implementation delay that is introduced by running the algo-
rithm to find the final caching placement set. As the value of k
increases, the running time of the proposed algorithm becomes
longer while the performance improves. In Theorem 1, we prove

that when k = 2, the theoretical worst-case performance guar-
antee of the proposed algorithm is 1

2 (1 − 1/e), i.e., its solution
achieves at least the ratio 1

2 (1 − 1/e) ≈ 0.316 of the optimal
objective value. In practice, as it will be shown in the simulation
results in Section VI, the algorithm performance approximation
ratio is much higher than the theoretical lower bound, which is
generally above 0.95.

Theorem 1: The better cache placement result achieved by
running separately and comparing the 2-cost benefit greedy al-
gorithm given in Algorithm 1 and the 2-simple greedy algorithm
provides a 1

2 (1 − 1/e) approximation. That is, in the worst case,
it can achieve a performance guarantee of ratio 1

2 (1 − 1/e) to
the optimum.

Proof: This theorem can be proved by using the diminishing
return property of submodular functions. For the details, please
refer to Appendix A. �

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our mobile
edge caching placement optimization algorithms, and derive
simple guidelines for effective cache allocation in wireless adap-
tive streaming systems under different simulation settings. We
compare their performance with two schemes in the recent liter-
ature: 1) Femto-Cache, the femto-caching system and its associ-
ated greedy algorithm proposed in [12], which aims at minimiz-
ing the average downloading delay of users for wireless video
content delivery through allocating the cached content among
the distributed edge servers; and 2) Pop-Cache, the popular-
ity based adaptive streaming caching system proposed in [20],
where each edge server caches all bitrate representations for a
few top popular videos and only pre-fetches the highest bitrate
representations for some other less popular videos, subject to
the allocated cache storage capacity. As comparison algorithms,
pop-cache is selected as a non-cooperative caching scheme that
only considers the video content popularity, while femto-cache
is chosen as a cooperative caching scheme that considers both
the video content popularity and the cooperation among edge
servers. The reason for this selection is to show the caching per-
formance gain achieved by exploiting the cooperation through
the comparison between pop-cache and femto-cache. In ad-
dition, as a comparison between the two cooperative caching
schemes, the proposed algorithm achieves additional caching
performance gain compared to femto-cache.

A. Simulation Settings

We consider a wireless network where U = 40 users are ran-
domly distributed in a cellular region formed by a disk of radius
100 m with the base station located at the center. Four edge
servers (S = 4) are distributed in the cellular region in two dif-
ferent ways. Specifically, the edge servers are either uniformly
placed as shown in Fig. 2(a), or placed according to the user dis-
tribution as shown in Fig. 2(b). The connectivity range (effective
transmission range) of each edge server is set to 75 m, which
results in the network connectivity graphs shown in Fig. 2(a)
and (b). In accordance with the simulation settings in [6], we
assume that the base station operates on a 20 MHz band with a
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Fig. 2. Network connectivity graph with S = 4 edge servers and U = 40
independently and randomly distributed users, where (a) the edge servers are
uniformly placed, and (b) the edge servers are placed according to the user
distribution, i.e., more edge servers are placed in the area with higher user
density.

Fig. 3. Distortion reduction vs. encoding bitrate curves of the four videos.

spectral efficiency of 4 bits/s/Hz, while each edge server oper-
ates on a 20 MHz band with a spectral efficiency of 6 bits/s/Hz
and the interference issue between the edge servers is neglected.
Since current 802.11 WiFi standards allow operations on multi-
ple 20 MHz bands, we further assume that the neighboring edge
servers are operating on the orthogonal bands and each edge
server allocates its transmission resource in a fair and uniform
way between users.

Four test videos (F = 4, Crowd Run, Riverbed, Tractor, and
Sunflower) with 1080p resolution (1920 × 1080) [43] are se-
lected as the video files needed for caching. These four test
videos correspond to different content types, i.e., dense object
motion for Crowd Run, rich details/fine textures and dense ob-
ject motion for Riverbed, camera movement and medium object
motion for Tractor, and small object motion for Sunflower, re-
spectively. Suppose that the time duration of each video clip
is T = 10 s, and ΔT = 1 s is the time fraction within a video
clip that is required to be buffered by the user before the actual
playback starts on the user’s screen, and the constant maximal
distortion is set as Dmax = 500. At a frame rate of 30 fps, we
further encode each video into M = 3 representations with en-
coding rate being {3R, 2R, R} and R = 2 Mbps. The distortion
reduction versus encoding bitrate curves of these four videos are
illustrated in Fig. 3, where we see that the video content plays

a key role in the rate-distortion characteristics. In particular, the
distortion reduction increases faster with the rate when the video
content has smaller motion. The storage capacity for each edge
server is set to Bs = 6RT = 120 Mbits. We further assume that
the popularity of the four videos follows a Zipf distribution with
parameter 0.56 [30], i.e., the requesting probabilities of Crowd
Run, Riverbed, Tractor, and Sunflower videos are 0.38, 0.25,
0.20, and 0.17, respectively5. We implement the proposed and
comparison algorithms on a 48-processor server with 252 GB of
RAM using Linux 3.1 kernel, where each processor is an Intel
Xeon CPU E5-2680 at a clock frequency of 2.50 GHz.

B. Performance Comparison

In Table II, we compare the performance of the different cache
allocation algorithms in the two network topologies shown in
Fig. 2, in terms of the theoretical computational complexity,
average distortion reduction per user (achieved by the cached
content in edge servers), approximation ratio with respect to
the average distortion reduction per user, and base station trans-
mission rate. Besides the proposed k-CB greedy algorithm, the
simple greedy algorithm in Table II stands for the 0-simple
greedy algorithm, where we remove the cost term Rf,m · T in
(15) and (16) and only add at each iteration an element maxi-
mizing the marginal benefit Q(At−1 ∪ {vs

f,m}) − Q(At−1) in
Algorithm 1. In addition, the optimal solution of the ILP in (8)
obtained by the IBM ILOG CPLEX solver [35] using a branch
and bound method with a very high (i.e., exponential) time com-
plexity O(22U ·3F ·3M ·2S ) is given as a performance upper bound.
From the perspective of computational complexity, this optimal
solution would become infeasible with the increase of either
the number of representations or the network scale. In contrast,
in different network topologies, the proposed k-CB greedy al-
gorithm achieves a good approximation performance with the
approximation ratio generally above 0.95 but with a much lower
(i.e., polynomial) time complexity O((SFM)k+1U). The com-
putational complexity of the proposed k-CB greedy algorithm
could be further reduced as k decreases, with the cost of only a
slight reduction on the approximation ratio. Specifically, when
k = 0, the proposed algorithm achieves a linear time complexity
which is the same as the femto-cache and pop-cache algorithms.

As a performance comparison, the average distortion reduc-
tion per user and the approximation ratio achieved by the pro-
posed k-CB greedy algorithm generally outperforms the other
two comparison algorithms (femto-cache and pop-cache), while
the base station transmission rate incurred by the proposed al-
gorithm is usually kept at a very low level. For example, pop-
cache and femto-cache algorithms result in 0.772- and 0.954-
approximation ratio of the optimal solution in network topology
2, with the base station transmission rate of 22.75 Mbps and
6.00 Mbps, respectively. For the case of k = 0 and k = 1, the
proposed k-CB greedy algorithm advances the approximation
ratio to 0.976 and 0.986, respectively. When k becomes large,

5Please note that this popularity distribution is chosen as an illustrative exam-
ple. The proposed algorithm can be applied to any other popularity distribution,
which is also experimentally justified in Table III in Section VI-D.
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TABLE II
COMPARISON ON COMPUTATIONAL COMPLEXITY AND ALGORITHM PERFORMANCE

Network topology 1 Network topology 2

Theoretical
Algorithm computation Ave. distortion Approx. BS rate Ave. distortion Approx. BS rate

complexity reduction ratio (Mbps) reduction ratio (Mbps)

Optimum O(22U ·3F ·3M ·2S ) 423.0 - 0 399.7 - 6.00
3-CB Greedy O((SF M )4 U ) 418.6 0.990 0 397.5 0.995 6.00
2-CB Greedy O((SF M )3 U ) 416.6 0.985 0 397.0 0.993 6.34
1-CB Greedy O((SF M )2 U ) 409.9 0.969 0 393.9 0.986 6.69
0-CB Greedy O(SF MU ) 402.5 0.952 0 389.9 0.976 6.00
Simple Greedy O(SF MU ) 344.4 0.814 17.98 356.9 0.893 14.72
Femto-Cache O(SF MU ) 404.0 0.955 0 381.1 0.954 6.00
Pop-Cache O(SF M ) 265.5 0.628 29.88 308.4 0.772 22.75

e.g. k = 3, the proposed algorithm can even achieve 0.995-
approximation ratio, while the base station transmission rate is
6 Mbps, which is the same as the optimal solution. The fun-
damental reason why the proposed algorithm outperforms the
others is the following. In addition to the consideration of video
file popularity and the cooperation among different edge servers,
the caching decision for the representations of different videos
can be further adapted to the video content characteristics in
our algorithm. For videos with small motion (e.g., Tractor and
Sunflower), the proposed algorithm only allocates the basic rep-
resentation with the smallest bitrate R at each edge server, while
for videos with larger motion (e.g., Crowd Run and Riverbed),
representations with larger bitrate 2R or 3R are allocated at
some edge servers to gain larger distortion reduction. As a result,
a better overall cache allocation performance can be achieved
by the proposed algorithm.

C. Impact of System Parameters

In this subsection, we evaluate and compare the algorithm
performance of different schemes under various simulation set-
tings, in order to gain a further insight into the impact of different
system parameters. In this set of simulations, we still adopt the
same settings as in Section IV-A, unless stated otherwise.

1) Cache Size Bs: Fig. 4 illustrates the results measur-
ing the average distortion reduction per user and the addi-
tional base station transmission rate under two different net-
work topologies, by varying the cache size of each edge
server Bs . In this simulation, all edge servers have the same
cache size, which is varied from 2RT = 40 Mbits to 14RT =
280 Mbits. The general observation for all algorithms un-
der different network topologies is that the average distortion
reduction per user increases and the base station transmission
rate decreases, as the cache size gradually increases. The reason
is that, the edge server can pre-fetch more video representations
in its local cache with the increment of the cache size, which in
turn can create more opportunities for the different edge servers
to serve more user requests without the need to communicate
with the base station. For the comparison algorithms, when the
cache size is small (e.g., Bs = 2RT ) such that a very limited
number of representations could be stored in the edge servers,
the femto-cache algorithm outperforms the pop-cache algorithm

Fig. 4. Average distortion reduction per user vs. cache size in (a) network
topology 1, and (b) network topology 2; and base station transmission rate vs.
cache size in (c) network topology 1, and (d) network topology 2; where the
simulation setting is F = 4 video files, M = 3 representations, S = 4 edge
servers, and U = 40 users.

with the achieved average distortion reduction per user very
close to the optimal solution. On the contrary, when the cache
size is large (e.g., Bs = 12RT ), the pop-cache algorithm out-
performs the femto-cache algorithm in terms of the achieved
average distortion reduction per user. Compared with these two
algorithms, the proposed k-CB greedy algorithm can achieve a
better approximation performance in terms of the largest average
distortion reduction per user (i.e., largest approximation ratio),
while the additional base station transmission rate is very close
to the optimal solution. The simple greedy algorithm stands for
the 0-simple greedy algorithm that is obtained by removing the
caching storage cost consideration (i.e., the term Rf,m · T in
(15) and (16)) in Algorithm 1 and setting k = 0. Therefore, the
average distortion reduction per user achieved by the simple
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Fig. 5. Comparison between multiple representation caching and single rep-
resentation caching: average distortion reduction per user vs. cache size in (a)
network topology 1, and (b) network topology 2; and base station transmission
rate vs. cache size in (c) network topology 1, and (d) network topology 2; where
the simulation setting is F = 4 video files, M = 3 representations, S = 4 edge
servers, and U = 40 users.

greedy algorithm is comparable to the proposed k-CB greedy
algorithm when the caching storage resource is not limited (i.e.,
when the cache size Bs is large). In contrast, when Bs is small,
the overall caching performance of the simple greedy algorithm
is even poorer than femto-cache algorithm. In addition, for all
different cache sizes Bs and different network topologies, the
average distortion reduction per user will be improved with the
increment of the initial set size k. It can be seen in Fig. 4 that
when k increases to 3, all the performance curves almost overlap
with those of the optimal solution.

For the same setting as in Fig. 4, we further show in Fig. 5
the additional caching performance gain introduced by adaptive
streaming with multiple representations for each video, in terms
of both the average distortion reduction per user and the base
station transmission rate. Here, adaptive streaming method de-
notes the optimal solution to the ILP in (8), where each video
is encoded to three representations with encoding rate being
6 Mbps, 4 Mbps and 2 Mbps, respectively. In comparison, sin-
gle rep. (e.g., 2 Mbps) method represents the optimal solution
to the ILP in (8), where only single representation is encoded
for each video with a specific encoding rate (e.g., 2 Mbps). It
can be demonstrated that for both network topologies and dif-
ferent caching sizes, a higher average distortion reduction per
user and a lower base station transmission rate can be achieved
through introducing adaptive streaming into the caching sys-
tem, compared to any of the three single representation caching
cases.

2) Number of Users U : From the result shown in Table II
and Figs. 4 and 5, it is justified that the performance comparison

Fig. 6. (a) Average distortion reduction per user, (c) base station transmission
rate and (e) algorithm running time vs. number of users when cache size Bs =
6RT = 120 Mbits; and (b) average distortion reduction per user, (d) base station
transmission rate and (f) algorithm running time vs. number of users when cache
size Bs = 10RT = 200 Mbits; where the simulation is conducted in network
topology 1 with F = 4 video files, M = 3 representations, and S = 4 edge
servers.

among different algorithms is similar for both network topol-
ogy 1 and network topology 2, i.e., independent of the spe-
cific network topology. Therefore, we select network topology
1 shown in Fig. 2(a) as the representative network in the fol-
lowing subsections, and studied the impact of other parameters.
We vary the number of users, and accordingly shown in Fig. 6
the average distortion reduction per user, base station trans-
mission rate and algorithm running time achieved by different
algorithms under two cache size settings, namely Bs = 6RT =
120 Mbits and Bs = 10RT = 200 Mbits, respectively. Fig. 6(a)
and (b) shows that the average distortion reduction per user gen-
erally decreases as the number of users increases. The reason
is that the base station and all the edge servers allocate their
transmission resources fairly to all the connected users. When
more users join the network and connect to the base station
and edge servers, they will compete for the shared transmission
resources, which indicates a higher probability of communica-
tion link interference and lowers the average user throughput.
The major exception occurs when the number of users U is
small for the pop-cache algorithm. For example, instead of the
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expected decreasing behavior, the average distortion reduction
per user achieved by pop-cache algorithm would increase when
U increases from 40 to 60 in Fig. 6(a). This can be explained as
follows. When the local cache size is limited, pop-cache algo-
rithm allocates as many representations with the highest bitrate
as possible to each edge server while the caching priority of
each representation is in a decreasing order of the popularity.
For U = 40, the average user throughput in the network allows
the edge server to pre-fetch the highest bitrate representation
of 6 Mbps. When U increases to 60, the highest bitrate repre-
sentation allowed to be cached in the edge server reduces to
4 Mbps due to the reduction of the average user throughput.
Therefore, more representations of different videos with lower
bitrates can be cached in each edge server, which in turn results
in a higher distortion reduction for each user. It can also be
noted that when the cache size is large enough (the Bs = 10RT
case) to pre-fetch a large number of representations, the simple
greedy algorithm could achieve the same average distortion re-
duction per user as the optimal solution. Fig. 6(c) and (d) shows
that the base station rate achieved by the proposed k-CB greedy
algorithm is the same as the optimal solution, which is 0 for
different number of users.

The algorithm running time is another performance metric
which has the same as the average distortion reduction per user.
In Fig. 6(e) and (f), we compare the actual running time of dif-
ferent algorithms, and show the impact of the number of users U
on the running time. Through the curves in Fig. 6(e) and (f), the
previous theoretical analysis of the computational complexity
is well justified. That is, the proposed k-CB greedy algorithm
and simple greedy algorithm, as well as the other two compar-
ison algorithm, have the polynomial computational complexity
as shown in Table II. Specifically, the computational complex-
ity of all the algorithms (excluding the pop-cache algorithm) is
linear with respect to U , while the computational complexity of
the pop-cache algorithm is not affected by U .

3) Number of Edge Servers S: We still consider a network
organization as in the network topology 1 shown in Fig. 2(a),
but vary the number of edge servers that are uniformly placed in
the cellular region. We then show in Fig. 7 the average distortion
reduction per user, base station transmission rate and algorithm
running time achieved by different algorithms under two cache
size settings Bs = 6RT = 120 Mbits and Bs = 10RT = 200
Mbits, respectively. Fig. 7(a) and (b) shows that the average
distortion reduction per user generally increases as we place
more edge servers in the cellular region. The reason is that when
the number of edge servers increases, each edge server serves
a smaller number of users, which decreases the probability of
communication link interference among users and thus increases
the average user throughput. In addition, a denser deployment
of the edge servers within the same cellular region creates more
opportunities for the coordination between edge servers to cache
different representations and better support the users’ requests
by the cached content. Fig. 7(c) and (d) shows that the base
station rate achieved by the proposed k-CB greedy algorithm is
the same as the optimal solution.

Fig. 7(e) and (f) illustrates the comparison of the algorithm
running time versus the number of edge servers S achieved by

Fig. 7. (a) Average distortion reduction per user, (c) base station transmission
rate and (e) algorithm running time vs. number of edge servers when cache
size Bs = 6RT = 120 Mbits; and (b) average distortion reduction per user,
(d) base station transmission rate and (f) algorithm running time vs. number
of edge servers when cache size Bs = 10RT = 200 Mbits; where the sim-
ulation is conducted in network topology 1 with F = 4 video files, M = 3
representations, and U = 40 users.

the different algorithms. These actual running time curves also
justify that the computational complexity of all the algorithms
have the polynomial computational complexity as shown in
Table II.

D. Performance Evaluation for Larger System Settings

Finally, we conduct simulations for larger scale settings. In
total, F = 15 test videos with 1080p resolution (1920 × 1080),6

available at [43], are selected as the video files to be cached in
the edge servers and requested by the users. They correspond to
different motion and video types (such as, sports, documentary,
cartoon and movie). For the video popularity, we investigate
three different popularity distributions, i.e., the Zipf distribution
with parameter 0.8 and 0.56, and the uniform distribution. We
also consider a larger wireless network with U = 200 users
randomly distributed in a cellular region formed by a disk of

6These videos are: Aspen, Blue Sky, Controlled Burn, Crowd Run, Dinner,
Ducks Take Off, Riverbed, In To Tree, Life, Old Town Cross, Station2, Sunflower,
Touchdown Pass, Tractor, and Park Joy.
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TABLE III
COMPARISON OF AVERAGE DISTORTION REDUCTION PER USER AND BASE STATION TRANSMISSION RATE UNDER DIFFERENT POPULARITY DISTRIBUTIONS

Algorithm Zipf distribution, parameter 0.8 Zipf distribution, parameter 0.56 Uniform distribution

Ave. distortion reduction BS rate (Mbps) Ave. distortion reduction BS rate (Mbps) Ave. distortion reduction BS rate (Mbps)

Optimum 459.2 1.63 455.2 0.45 449.4 0
2-CB Greedy 454.4 1.34 450.1 1.77 443.0 2.4
1-CB Greedy 454.2 1.34 449.9 1.77 442.6 2.4
0-CB Greedy 453.6 1.34 449.4 1.77 442.0 2.4
Simple Greedy 408.4 52.69 394.1 62.35 371.7 76.67
Femto-Cache 442.2 1.31 436.3 1.65 426.9 2.4
Pop-Cache 379.2 75.41 350.7 97.22 284.2 150.27

radius 200 m, and S = 16 edge servers uniformly placed in this
cellular region. The storage capacity of each edge server is set to
Bs = 18RT = 360 Mbits, and all the other parameters are the
same as previously. The other simulation settings are the same
as in Section IV-A.

In Table III, we compare the average distortion reduction per
user and the base station transmission rate obtained by different
caching placement algorithms under the three different popu-
larity distributions. Although the system settings scale with a
larger number of videos, edge servers and users, it is again ver-
ified that, for all popularity distributions the proposed k-CB
greedy algorithm outperforms the femto-cache and pop-cache
algorithms. It achieves a higher average distortion reduction per
user, and comparable or lower base station transmission rate.
Specifically, for all popularity distributions, the proposed k-CB
greedy algorithm (k = 0, 1, 2) improves the average distortion
reduction per user by at least 11.4 (in MSE) compared to the
femto-cache algorithm, and improves by at least 74.4 (in MSE)
compared to the pop-cache algorithm. This average video dis-
tortion reduction per user performance is only about 5 (in MSE)
lower than the optimal solution, while the additional base sta-
tion transmission rate is comparable with the optimal solution.
In terms of the average additional base station transmission rate
over all the three popularity distributions, the difference between
the proposed k-CB greedy algorithm and the optimal solution
is only 1.1 Mbps.

In order to gain a further insight into the superiority of the
proposed algorithm over the optimal ILP solution provided by
the generic solver IBM ILOG CPLEX [35], we compare the per-
formance of the proposed 0-CB greedy algorithm, the simple
greedy algorithm, and the optimal solution in Fig. 8. Specifi-
cally, we show the performance comparison of the algorithm
running time, the average distortion reduction per user, and
the approximation ratio versus the number of edge servers S in
Fig. 8(a)–(c), respectively. The same set of performance compar-
ison versus the number of video files F is shown in Fig. 8(d)–(f),
respectively. We see that the previous theoretical analysis of
the computational complexity is well justified. That is, the
optimal solution needs a very high computational complexity
which is exponential to S and F , while both the proposed 0-
CB greedy algorithm and simple greedy algorithm achieve a
linear computational complexity. In addition, the overall ap-
proximation ratio of the proposed 0-CB greedy algorithm is
greater than 0.95 in Fig. 8(c) and greater than 0.99 in Fig. 8(f),

Fig. 8. (a) Algorithm running time, (c) average distortion reduction per user,
and (e) approximation ratio vs. number of edge servers, and (b) algorithm
running time, (d) average distortion reduction per user, and (f) approximation
ratio vs. number of video files, where the video popularity distributions follow
a Zipf distribution with parameter 0.8.

respectively. Therefore, the performance of the proposed 0-CB
greedy algorithm is very close to the performance upper bound
guided by the optimal solution, but the actual running time is
much shorter. In other words, the proposed algorithm has a much
lower increasing rate of the running time and scales better than
the optimal solution solved by the generic solver IBM ILOG
CPLEX [35]. Considering a practical wireless video caching
system with a large number of videos, representations, edge
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TABLE IV
SYSTEM SETTINGS IN FIG. 9

Index no. of videos F no. of users U no. of edge servers S Radius of cellular region Smaller cache size Bs Larger cache size Bs

1 250 500 4 200 m 30RT = 12G bits 60RT = 24G bits
2 500 1000 8 280 m 60RT = 24G bits 120RT = 48G bits
3 750 1500 12 350 m 90RT = 36G bits 180RT = 72G bits
4 1000 2000 16 400 m 120RT = 48G bits 240RT = 96G bits

Fig. 9. (a) Average distortion per user and (c) average base station transmis-
sion rate per user vs. system scale when cache size Bs is set to 30RT = 12G
bits, 60RT = 24G bits, 90RT = 36G bits, and 120RT = 48G bits, respec-
tively, for the four system settings; and (b) Average distortion per user and (d)
average base station transmission rate per user vs. system scale when cache
size Bs is set to 60RT = 24G bits, 120RT = 48G bits, 180RT = 72G bits,
and 240RT = 96G bits, respectively, for the four system settings. The video
popularity distributions follow a Zipf distribution with parameter 0.8.

servers and users, the long waiting time for the IBM ILOG
CPLEX solver to obtain the optimal solution makes it infeasi-
ble in practice. In contrast, the proposed algorithm is suitable
for the delay sensitive video applications since it is capable of
achieving a near-optimal solution within a short period of time.

Next, in Fig. 9, we proportionally scale up the system accord-
ing to the settings in Table IV and show its impact on different
algorithms. Here, we assume that each edge server operates on
a 20 MHz band with a spectral efficiency of 60 bits/s/Hz, and
the length of each video clip is T = 200 s. The other simulation
settings are the same as in Section IV-A. For these large system
settings, it becomes infeasible for IBM ILOG CPLEX solver
to get the optimal solution due to the exponential computation
complexity issue. Therefore, we compare the caching perfor-
mance (in terms of the average distortion reduction per user
and the average base station transmission rate per user) of the
proposed 0-CB greedy algorithm with the simple greedy, femto-
cache and pop-cache algorithms in Fig. 9. It can be seen that
scaling up the system will not degrade the caching performance

of all the different algorithms. In particular, the proposed 0-CB
greedy algorithm keeps a relatively stable caching performance
and a relatively stable performance gain compared to other al-
gorithms under all the different system settings, which indicates
that it can also be applied to VoD systems with larger settings
than any of the system settings studied in this paper.

E. Discussion

In terms of the system design, the above observations show
that, when the cache size of each edge server is large enough
to pre-fetch a large number of representations, the proposed
simple greedy algorithm could almost achieve the same aver-
age distortion reduction per user as the optimal solution, with
only a linear computational complexity. For the proposed k-CB
greedy algorithm, it generally outperforms the other comparison
algorithms for different simulation settings. In addition, we can
seek the tradeoff between the algorithm performance and the
computational complexity (algorithm running time) by adapt-
ing the value of the initial set size k. A larger k improves the
algorithm’s performance, but at the cost of a longer execution
time. In practice, to have a near optimal approximation solution
with affordable algorithm running time, we could set k to 0 or
1 for large scale networks.

In addition, these observations could further provide some
design guidelines for the edge servers to select the cached rep-
resentations with corresponding bitrates. That is, the caching
placement strategy for all the representations of all the videos
is not only dependent on the video popularity distribution, but
also affected by the video content characteristics (i.e., the R-
D behavior). For the same video type, straightforwardly, a
larger amount of representations with higher bitrates needs to
be cached by the edge servers for more popular videos. While
for different video types, a larger amount of representations
with higher bitrates need to be cached by the edge servers for
videos with larger motion of the objects, or videos with more
complex content (e.g., dense objects, camera movement, and
zoom effect). Overall, the proposed algorithm complies well
with these design guidelines and scales well with the size of
the system. Since it could further strike the tradeoff between the
algorithm performance and the computational complexity (algo-
rithm running time), it is therefore useful for the practical system
design.

VII. CONCLUSION

This paper studied a QoE-driven mobile edge caching place-
ment optimization problem for adaptive streaming systems. We
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have provided an ILP formulation to achieve the performance
upper bound, and an equivalent constrained submodular maxi-
mization that is used to develop an approximate algorithm with
polynomial time complexity. Simulation results have justified
that the proposed cost benefit greedy algorithm could achieve a
near-optimal performance without introducing a long additional
computation delay, which is therefore suitable for delay sensi-
tive applications such as adaptive streaming. These results also
demonstrated that by introducing adaptive streaming to allow
caching multiple representations for the same video, the pro-
posed caching placement optimization framework could achieve
an additional caching performance gain (in terms of higher av-
erage distortion reduction per user and lower base station trans-
mission rate) over the single-representation caching schemes.
We also found that the performance of the caching placement
is greatly affected by the R-D behaviors of different video con-
tents, in addition to the common considerations (such as video
content popularity distribution and network conditions) of ex-
isting caching schemes on adaptive streaming. Based on the
analysis and simulation results, we further provided some de-
sign guidelines for the caching resource allocation of the edge
servers among multiple bitrate representations. For the same
video type, a larger amount of representations with higher bi-
trates needed to be cached by the edge servers for more popular
videos. While for different video types, a larger amount of rep-
resentations with higher bitrates needed to be cached by the
edge servers for videos with larger motion of the objects, or
videos with more complex content. For future work, we plan to
formally extend the proposed mobile edge caching placement
policy to future network architectures, such as information-
centric networks (ICNs) and software-defined networks
(SDNs).

APPENDIX A
PROOF OF THEOREM 1

If the cardinality of the optimal solution to the problem
SUB in (12) is not greater than two, then such a solution can
be found by Algorithm 1 through enumerating all possible
sets with cardinality of two or less. In the following, we only
consider the case that the optimal solution to problem SUB has
a cardinality greater than two. Specifically, denote A∗ as the
optimal solution, which is further ordered such that:

Q({v1 , v2 , . . . , vt}) =

max
v∈A∗\{v1 ,v2 ,...,vt−1 }

Q({v1 , v2 , . . . , vt−1} ∪ {v}). (18)

In other words, v1 is an element of the optimal solution set
A∗ that has the largest value of the objective function, and
v2 is an element that achieves the largest marginal increase
in the value of the objective function if it is added to the set
{v1}, and so on. Denote A0∗ = {v1 , v2} as the set comprising
the first two elements of the optimal solution set A∗. For any
element vk ∈ A∗ \ A0∗ and any set Y ⊆ V , following from
the submodularity and the ordering property of the optimal

solution set A∗, we have the following inequalities:

Q(A0∗ ∪ Y ∪ {vk}) − Q(A0∗ ∪ Y) ≤ Q({vk}) − Q(∅)
≤ Q({vk}) ≤ Q({v1}),

(19)

Q(A0∗ ∪ Y ∪ {vk}) − Q(A0∗ ∪ Y) ≤ Q({v1} ∪ {vk})
− Q({v1}) ≤ Q({v1 , v2})
− Q({v1}). (20)

By summing up (19) and (20), we have:

2[Q(A0∗ ∪ Y ∪ {vk}) − Q(A0∗ ∪ Y)] ≤ Q(A0∗). (21)

Since the proposed cost-benefit greedy algorithm enumerates all
possible choices of the starting set with cardinality of two, we
consider a specific greedy procedure within Algorithm 1 where
the set A0∗ is selected as the starting set, i.e., A0 = A0∗. Next,
we will prove that the objective function value of the solution
set obtained by this greedy procedure guarantees at least a ratio
1
2 (1 − 1/e) to the value achieved by the optimal solution set A∗.

Define a new set function g(A) = Q(A) − Q(A0∗), and its
monotone submodularity can be directly obtained since Q(A)
is a monotone submodular function as shown in Proposition 1
and Q(A0∗) has a constant value. For any step t, we have:

g(A∗) ≤ g(At ∪ A∗) = g(At ∪ (A∗ \ At)) (22a)

≤ g(At) +
∑

vs
f , m ∈A∗\At

[g(At ∪ {vs
f,m}) − g(At)]

(22b)

= g(At) +
∑

vs
f , m ∈A∗\At

[Q(At ∪ {vs
f,m}) − Q(At)],

(22c)

where, (22a) and (22b) follow from the monotonicity and sub-
modularity of the set function g(A), respectively; and (22c) is
obtained by applying the definition of g(A).

Let t∗ be the last step at which the greedy procedure can
add a new element to At∗−1 , i.e., for t > t∗, the greedy pro-
cedure cannot add any new element to At due to the capacity
constraint in (17). In this case, the approximate solution is ob-
tained as At∗ . If At∗ = A∗, then such an approximate solution
achieves the optimal performance, otherwise, there must ex-
ist an element vt ′+1 ∈ A∗ which is obtained from (16) at step
t′ but cannot be added to the set At ′ since Rft ′+ 1 mt ′+ 1

· T +
∑

f∈F
∑M

m=1 1|
v

s
t ′

f , m ∈(At ′ ∩Vs
t ′+ 1

) · Rf,m · T > Bst ′+ 1
. Without

loss of generality, we further assume that t′i + 1, i =
1, 2, 3, . . . , Nt denotes the ordered steps for all vt ′i +1 ∈ A∗ but

not added to At ′i until time t. Then, for all t = 0, 1, 2, . . . , t∗,
according to (22), we have the following inequality:

g(A∗) ≤ g(At) +
∑

vs
f , m ∈A∗\(

⋃N t
i = 1 {vt ′

i
+ 1 }∪At )

Rf,m · T · θt+1

+
∑

vs
f , m ∈

⋃N t
i = 1 {vt ′

i
+ 1 }

Rf,m · T · θt ′i +1 (23a)
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≤ g(At) +
(

∑

s∈S
Bs −

∑

vs
f , m ∈A∗∩At

Rf,m · T
)

θt+1

+
∑

vs
f , m ∈

⋃N t
i = 1 {vt ′

i
+ 1 }

Rf,m · T · θt ′i +1 (23b)

≤ g(At) +
(

∑

s∈S
Bs −

∑

vs
f , m ∈A0 ∗

Rf,m · T
)

θt+1

+
∑

vs
f , m ∈

⋃N t
i = 1 {vt ′

i
+ 1 }

Rf,m · T · θt ′i +1 . (23c)

In (23a), we divide the set A∗ \ At into
⋃Nt

i=1{vt ′i +1}
(the subset of nodes that are in A∗ but not added into
At) and (A∗ \ At) \

⋃Nt

i=1{vt ′i +1} = A∗ \ (
⋃Nt

i=1{vt ′i +1} ∪
At). Based on the update and determination procedure in
Lines 8–12 in Algorithm 1, we have (A∗ \

⋃Nt

i=1{vt ′i +1}) ⊆
V t and thus A∗ \ (

⋃Nt

i=1{vt ′i +1} ∪ At) ⊆ V t \ At . From
(15), we then have Q(At ∪ {vs

f,m}) − Q(At) ≤ Rf,m · T ·
θt+1 ,∀vs

f,m ∈ A∗ \ (
⋃Nt

i=1{vt ′i +1} ∪ At). Next, we consider

the nodes in
⋃Nt

i=1{vt ′i +1}. Since each node vt ′i +1 is obtained

based on (15) and (16) at step t′i , we have Q(At ′i ∪ {v
st ′

i

ft ′
i
,m t ′

i

}) −

Q(At ′i ) = Rft ′
i
,m t ′

i

· T · θt ′i +1 . Since t′i + 1 ≤ t and At ′i ⊆ At ,

we have Q(At ∪ {v
st ′

i

ft ′
i
,m t ′

i

}) − Q(At) ≤ Rft ′
i
,m t ′

i

· T · θt ′i +1

from the submodularity. Therefore, the inequality in (23a)
holds; (23b) follows from the fact that A∗ is a feasible set and
thus

∑
vs

f , m ∈A∗ Rf,m · T ≤
∑

s∈S Bs , (23c) is obtained since

A0∗ ⊆ At .
Denote Tt as the set of time steps at which the element

vst

ft ,m t
obtained by (16) can be added into At−1 . Let Wt =∑

τ ∈T t Rfτ ,mτ
· T and W0 = 0. By the definition of the el-

ement vt∗ , we denote W ′ = Wt∗+1 = Wt∗ + Rft ∗+ 1 ,m t ∗+ 1 · T
and have W ′ ≥

∑
s∈S Bs −

∑
vs

f , m ∈A0 ∗ Rf,m · T = W ′′. For

j = 1, 2, . . . ,W ′, we define an auxiliary variable ρj = θt if

j = Wt−1 + 1, . . . ,Wt . Therefore, we have the following rela-
tionship between ρj and Wt . For any t ∈ Tt ,

∑Wt

j=Wt−1 +1 ρj =
(Wt − Wt−1) · θt = Rft ,m t

· T · θt ; for any t /∈ Tt , we have
∑Wt

j=Wt−1 +1 ρj = 0 since Wt = Wt−1 . The definition of Tt is
the set of time steps at which the element vst

ft ,m t
obtained by

(16) can be added into At−1 . Since t∗ is the last step at which
the greedy procedure can add a new element to At∗−1 , we have
t∗ ∈ T t∗ , and

g(At∗ ∪ {vt∗+1}) (24a)

= Q(At∗ ∪ {vt∗+1}) − Q(A0∗) (24b)

= Q(At∗ ∪ {vt∗+1}) − Q(At∗) + Q(At∗−1 ∪ {vt∗})

− Q(A0∗) (24c)

= · · · · · ·

= Q(At∗ ∪ {vt∗+1}) − Q(At∗) +
∑

τ ∈T t ∗

[Q(Aτ−1 ∪ {vτ })

− Q(Aτ−1)] (24d)

= Rft ∗+ 1 ,m t ∗+ 1 · T · θt∗+1 +
∑

τ ∈T t ∗

Rfτ ,mτ
· T · θτ (24e)

= (Wt∗+1 − Wt∗) · θt∗+1 +
∑

τ ∈T t ∗

(Wτ − Wτ−1) · θτ (24f)

=
Wt ∗+ 1∑

j=1+Wt ∗

ρj +
Wt ∗∑

j=1

ρj =
W ′
∑

j=1

ρj . (24g)

Similarly, g(At) =
∑

τ ∈T t Rfτ ,mτ
· T · θτ =

∑Wt

j=1 ρj ,∀t
= 1, 2, . . . , t∗. Denote G as the solution set obtained by the
2-simple greedy algorithm with initial set A0∗ = {v1 , v2}, then,
based on (23), we have, equations (25a)–(25c) as shown bottom
of this page.

From [44], we have
∑W ′

j=1 ρj/mink=1,2,...,W ′ {
∑k−1

j=1 ρj +
W ′′ρk} ≥ 1 − e−W ′/W ′′ ≥ 1 − 1/e. On the other hand, based
on the maximal marginal benefit criterion of the simple

g(At∗ ∪ {vt∗+1}) + g(G)
g(A∗)

≥

∑W ′

j=1
ρj + g(G)

mint=1,2,...,t∗{g(At) + W ′′θt+1} +
∑

vs
f , m ∈

⋃N t
i = 1 {vt ′

i
+ 1 }

Rf,m · T · θt ′i +1

(25a)

=

∑W ′

j=1
ρj + g(G)

mint=1,2,...,t∗

{
∑Wt

j=1
ρj + W ′′ρWt +1

}

+
∑

vs
f , m ∈

⋃N t
i = 1 {vt ′

i
+ 1 }

Rf,m · T · θt ′i +1

(25b)

=

∑W ′

j=1
ρj + g(G)

mink=1,2,...,W ′

{
∑k−1

j=1
ρj + W ′′ρk

}

+
∑

vs
f , m ∈

⋃N t
i = 1 {vt ′

i
+ 1 }

Rf,m · T · θt ′i +1

(25c)
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greedy solution set G and (18), we have g(G) ≥∑
vs

f , m ∈
⋃N t

i = 1 {vt ′
i
+ 1 }

Rf,m · T · θt ′i +1 . Therefore, we can obtain:

g(At∗ ∪ {vt∗+1}) + g(G)
g(A∗)

≥ 1 − 1/e. (26)

From the inequality above we have that at least one of the
values g(At∗ ∪ {vt∗+1}) and g(G) is greater than or equal
to 1

2 (1 − 1/e) · g(A∗). If g(G) ≥ 1
2 (1 − 1/e) · g(A∗), then we

have Q(G) ≥ 1
2 (1 − 1/e) · Q(A∗); otherwise, based on the def-

inition of the set function g(A) = Q(A) − Q(A0∗) and (21), we
have:

Q(At∗) = Q(A0∗) + g(At∗) (27a)

= Q(A0∗) + g(At∗ ∪ {vt∗+1}) − [g(At∗ ∪ {vt∗+1}) − g(At∗)]
(27b)

= Q(A0∗) + g(At∗ ∪ {vt∗+1}) − [Q(At∗ ∪ {vt∗+1}) − Q(At∗)]
(27c)

≥ Q(A0∗) +
1
2
(1 − 1/e) · g(A∗) − 1

2
Q(A0∗) (27d)

≥ 1
2
(1 − 1/e) · Q(A∗). (27e)

Therefore, the larger value of Q(At∗) and Q(G) is greater than
or equal to 1

2 (1 − 1/e) · Q(A∗), and the theorem is proved.
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